\qquad

Directions: Read each question carefully. Answer each question completely. ALL FRACTIONS SHOULD BE IN SIMPLEST TERMS! Show all your work for full credit! Good luck!! ©

1) Explain the difference between experimental and theoretical probability.
2) Make a tree diagram to find the number of choices that are possible if you choose one of 3 kinds of fruit (apple, orange, or grape), one of 2 kinds of vegetables (bean, or carrot), and one kind of potato (baked or ff)

Total number of Choices: \qquad P(grape \& carrot): \qquad
3) You select 40 marbles from a bag. The results are as follows: 4 blue marbles, 12 green marbles, 8 red marbles, 7 white marbles, and 9 yellow marbles. Find the experimental probability that you select a blue. List it as a fraction.
$P($ blue $)=$ \qquad
$\mathrm{P}($ not white $)=$ \qquad
$\mathrm{P}($ yellow or red $)=$ \qquad
4) Eight balls (numbered 1 to 8) are placed in a bag. One ball is selected at random. Find the following probabilities:
$P(4)=$ \qquad $P(\operatorname{not} 4)=$ \qquad
$\mathrm{P}(\mathrm{a}$ number greater than 10$)=$ \qquad $\mathrm{P}(\mathrm{a}$ number less than 3$)=$ \qquad
5) A box contains 6 green blocks and 1 white block. The blocks are randomly selected one at a time. What is the theoretical probability that you will pick a green block the first time? List it as a fraction.
6) The diagram shows the content of a jar of marbles. What is the probability of P (blue): \qquad randomly removing a blue marble from the jar? List it as a fraction.
\qquad

Key:
$\begin{aligned} & \text { (}=\text { Red } \\ & \text { Marble } \\ & \text { B }=\text { Blue } \\ & \text { Marble } \\ & \text { G }=\begin{array}{l}\text { Green } \\ \text { Marble }\end{array}\end{aligned}$
7) The following is the results of rolling a standard number cube. Use the table below to answer the following questions.

Number	Number of times rolled
1	6
2	3
3	11
4	7
5	8
6	10

a) Find the theoretical probability of rolling a 2.
b) Find the experimental probability that a 3 was rolled.

Fraction: \qquad Decimal: \qquad Percent: \qquad
c) Find the experimental probability that a number greater than 4 was rolled

Fraction: \qquad Decimal: \qquad Percent: \qquad
8) Joanna is playing a game with her friends. They are trying to guess the number of outcomes when they spin a spin the spinner below and roll a 6 sided number cube (a die). How many possible outcomes are there when Joanna spins the spinner and rolls the die? (HINT: What would be helpful for you to make in order to answer this question?)

\# of Outcomes: \qquad
9) When a coin is tossed 3 times, there 8 outcomes. What is the probability that the coin lands on tails all 3 times?

MULTIPLE CHOICE: SHOW YOUR WORK!!

10) Sydney will role a 6 sided number cube (a die) 6 times. Each time she rolls it, the probability that she will roll a 2 is $\frac{1}{6}$ Which statement is true?
A. Exactly one roll with be a 2.
B. There is a chance that all 6 rolls will be a 2 .
C. The second roll will be 2 .
D. If the first 5 rolls are not a 2 , the last roll will be 2 .
11) The bookstore at Cole's school sells 4 different colored pens: blue, black, red, and purple. They come in 2 types, erasable and non-erasable. Equal number of all colors and types of pens are distributed to students at random. What is the probability that a student will receive a red erasable pen? (Hint: What strategy will you use to help you answer this probability question?)
A. $\frac{1}{8}$
B. $\frac{1}{4}$
C. $\frac{3}{8}$
D. $\frac{1}{2}$
12) You mix the letters S, E, M, I, T, R, O, P, I, C, A, and L thoroughly. Without looking, you draw one letter. Find the probability that you select a vowel. Write your answer as a fraction in simplest form.
A. $\begin{gathered}12 \\ 5\end{gathered}$
B. 5
C. 1
D. 7
12 3 12
13) You mix the letters S,E,L,E,CT,E, and D thoroughly. Without looking, you draw one letter. What is the probability of drawing the following:

P(not E)
A. $\frac{3}{8} ; 0.375 ; 37.5 \%$
B. $\frac{8}{5} ; 1.6 ; 16 \%$
C. ${ }_{8}^{5} ; 0.625 ; 62.5 \%$
D. $\frac{8}{3} ; 2.667 ; 26.667 \%$
14) Paul is playing a game where he picks a letter of the alphabet out of a bag. There are 26 different letters in the bag. What is the probability that the letter Paul picks is in the word Classroom?
A. $\frac{9}{26}$
B. $\frac{7}{26}$
C. $\frac{7}{24}$
D. $\frac{5}{26}$
15) The McCarthy's have 3 children. What is the probability that all children are all boys? (Hint: What strategy might be helpful in answering this question?)
A. $\frac{1}{16}$
B. $\frac{1}{8}$
C. $\frac{1}{4}$
D. $\frac{1}{2}$
16) The McCarthy's have 3 children. What is the probability that at least 2 of them are boys?
A. $\frac{1}{16}$
B. $\frac{1}{8}$
C. $\frac{1}{4}$
D. $\frac{1}{2}$
17)

Drink Survey

Drink	Number of Shoppers Who Preferred It
A	9
B	10
C	10
D	3
E	9

What is the probability that 1 shopper, selected at random, preferred neither Drink E nor Drink B?
A. 22
B. 19
C. 32
D. 19
41
22
18) A Lights-A-Lot quality inspector examines a sample of 25 strings of lights and finds that 6 are defective.
a. What is the experimental probability that a string of lights is defective?
A. $\frac{3}{500}$
B. $\frac{3}{25}$
C. $\frac{1}{40}$
D. $\frac{6}{25}$
b. What is the best prediction of the number of defective strings of lights in a delivery of 1000 strings of lights?
A. 6 lights
B. 25 lights
C. 200 lights
D. 240 lights
19) A coin is tossed. If heads appears, a spinner that can land on any number from 1 to 6 is spun. If tails appears, a second coin is tossed instead of spinning the spinner. What are the possible outcomes?
A. H1 H2 H3 H4 H5
C. H1 H2 H3 H4 H5 H6 TH TT
B. H 1 H 2 H 3 H 4 H 5 H 6
D. HH HT
20) Estella is designing an experiment while she gets dressed. She has the following choices to make:

Pants: Checked, Pleated, Wool, Corduroy
Shirt: Silk, cotton, t-shirt
Create a tree diagram or table to show the sample space of Estella's experiment.

Find the probability of wearing the following as a fraction:
P(Checked Pants and Cotton shirt): \qquad
P (Wool pants): \qquad

